
RDMA Tutorial
Netdev 0x16

Roland Dreier (Enfabrica)
Jason Gunthorpe (NVIDIA)

What is RDMA?

Technology for high-performance communication, defined by three
major attributes:

1. HW data path via asynchronous submission and completion queues
2. Direct HW access via kernel bypass
3. One-sided operations: remote direct memory access (RDMA)

Asynchronous queues

● Data path is driven by submitting work requests to send and
receive queues and collecting completions from completion queues.

● Allows for efficient overlapping of computation and communication.
● Also supports efficient parallel applications via per-CPU or

per-thread queues.

Kernel bypass

● Transport is offloaded from application CPUs, including handling of
packetization / reliability / retransmission.

● RDMA HW and driver stack is designed so that data path can safely
go directly from a userspace application to HW by mapping a subset
of doorbells etc. into userspace processes.

● Supports architectures such as polling loops with minimal jitter.
● Control path, including resource management and cleanup remains

in the kernel.

Choice of one-sided and two-sided operations

● One-sided operations: one host moves data directly to or from
memory of its communication peer without involving or even
notifying its peer’s application CPU.

● Key assumption: memory is pre-registered and physically pinned
(although on-demand paging is supported by some HW platforms).

● Two-sided operations: one host posts a receive work request and its
peer then posts a send work request that consumes the receive
work request to deliver data.

● Can mix and match one-sided (RDMA) and two-sided (send/receive)
ops on a connection.

Transports

Multiple implementations of RDMA:

● Physical / link layers: InfiniBand and Ethernet
● Transports: InfiniBand / RoCE (aka IB-over-Ethernet), iWARP,

proprietary (eg Intel Omni-Path or AWS EFA)
● Transport properties: reliable vs. unreliable, connected vs.

datagram

Can experiment with a software implementation on any Ethernet
network via rxe (soft RoCE) driver.

Transport layering

https://lucid.app/lucidchart/9c159404-bbd2-48f7-99b9-f8d5bd4405bd/edit?page=0&v=367&s=720.0001889763779

RDMA programming on Linux

RDMA apps on Linux are developed using libibverbs and librdmacm from
rdma-core (https://github.com/linux-rdma/rdma-core), which provide
C/C++ and Python bindings.

● Librdmacm provides connection establishment with IP addressing
● Libibverbs provides an API for other control and data path

operations, realizing the abstract “verbs” interface as defined by the
IBTA.

https://github.com/linux-rdma/rdma-core

RDMA stack summary

Libibverbs, kernel driver stack, and
userspace “provider” libraries work
together to support RDMA
programming.

https://lucid.app/lucidchart/7e4f0134-7acd-4d14-b77b-4376784da1a9/edit?page=0&v=103&s=388.5810992125984

Major object types

● ibv_pd: “Protection Domain” - high-level container for other objects
● ibv_qp_ex: “Queue pair” – encapsulates a queue for posting receive

work requests and a queue for posting send work requests
● ibv_cq_ex: “Completion queue” – queue that receives completion

notifications for receive and send work requests; may be attached
to one or more work queues

● ibv_mr: “Memory region” – represents a memory buffer than can be
targeted by work requests; has a local key (L_Key) for use in local
work requests and a remote key (R_Key) that can be shared with a
peer for use in remote one-sided operations.

Exchanging data via a Reliable Connected (RC) QP

Key steps in communicating via RC QP:

1. Register buffer(s) that will be used for communication
2. Create and connect a QP via librdmacm
3. Post receive work request(s)
4. Post send work request(s)
5. Poll for completion of work requests

Working source in examples directories of
https://github.com/linux-rdma/rdma-core

https://github.com/linux-rdma/rdma-core

Initial set up

Create required objects including PD and CQ

struct ibv_pd *pd = ibv_alloc_pd(verbs_context);
if (!pd) {

/* error handling… */

struct ibv_cq_init_attr_ex cq_attr = {
.cqe = num_entries, cq_context = my_context, … };

struct ibv_cq_ex *cq = ibv_create_cq_ex(verbs_context, &cq_attr);
if (!cq) { /*...*/

Register memory

Allocate a buffer to hold data and register it with libibverbs:

void *buf = malloc(BUF_SIZE);
struct ibv_mr *mr = ibv_reg_mr(pd, buf, BUF_SIZE,

 IBV_ACCESS_LOCAL_WRITE);

Connection establishment with librdmacm

Sockets-like, with an asynchronous event-driven interface

(Not strictly required, but provides an abstraction that covers multiple
transports)

Connection establishment with librdmacm

Sockets-like, with an asynchronous event-driven interface

First create an “event channel”:

struct rdma_event_channel *channel;
channel = rdma_create_event_channel();
if (!channel) {

/* error handling... */
}

Connection establishment with librdmacm

Both sides resolve server address:

struct rdma_addrinfo hints, *rai;

memset(&hints, 0, sizeof hints);
hints.ai_flags = RAI_PASSIVE;
hints.ai_port_space = RDMA_PS_TCP;
err = rdma_getaddrinfo(server_addr, port, &hints, &rai);

Connection establishment with librdmacm

Passive side creates and binds a listen “ID” and listens:

struct rdma_cm_id *listen_id;
err = rdma_create_id(channel, &listen_id, myctx, RDMA_PS_TCP);
err = rdma_bind_addr(listen_id, rai->ai_src_addr);
err = rdma_listen(listen_id, 0);
/* events will be generated for incoming connection requests */

Connection establishment with librdmacm

Active side creates ID and resolves address of server:

struct rdma_cm_id *cma_id;
err = rdma_create_id(channel, &cma_id, myctx, RDMA_PS_TCP);
err = rdma_resolve_addr(cma_id, rai->ai_src_addr,

 rai->ai_dst_addr, 2000);
/* rdma_resolve_addr will generate an event on completion */

Connection establishment with librdmacm

Event loop for handling connection events:

struct rdma_cm_event *event;
while (true) {

err = rdma_get_cm_event(test.channel, &event);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED: /* etc */
}
rdma_ack_cm_event(event);

}

Connection establishment with librdmacm

Notable events to handle:

case RDMA_CM_EVENT_ADDR_RESOLVED: /* call rdma_resolve_route() */
case RDMA_CM_EVENT_ROUTE_RESOLVED: /* call rdma_create_qp()

 and rdma_connect() */
case RDMA_CM_EVENT_CONNECT_REQUEST: /* call rdma_accept() */
case RDMA_CM_EVENT_ESTABLISHED: /* start communication */
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED: /* handle these and other errors */
case RDMA_CM_EVENT_DISCONNECTED: /* handle disconnection */

Post receive work request

Fill in a scatter list and queue work request to receive queue:

struct ibv_recv_wr wr, *bad_wr;
struct ibv_sge sge;
wr.sg_list = &sge;
wr.num_sge = 1;
wr.wr_id = (uint64_t) my_id;
sge.addr = (uintptr_t) buf;
sge.length = BUF_SIZE;
sge.lkey = mr->lkey;
err = ibv_post_recv(qp, wr, &bad_wr);

Post send work request

Fill in an gather list and queue work request to send queue:

ibv_wr_start(qp);
qp->wr_id = MY_WR_ID;
qp->wr_flags = 0; /* ordering/fencing etc */
ibv_wr_set_sge(qp, mr->lkey, (uintptr_t) buf, BUF_SIZE);
/* ibv_wr_set_sge_list() for multiple buffers */
err = ibv_wr_complete(qp);

Poll for completion

Non-blocking check for completion queue entries

struct ibv_poll_cq_attr attr = {};
err = ibv_start_poll(cq, &attr);
while (!err) {

end_flag = true;
/* consume cq->status, cq->wr_id, etc */
err = ibv_next_poll(cq);

}
if (end_flag)

ibv_end_poll(cq);

Differences for Unreliable Datagram (UD)

UD QPs are not connected and can receive messages from multiple
sources

● Message size limited to one packet (path MTU)
● Must specify queue key (Q_Key) for destination
● Source information delivered with each message

